This paper presents a portable quantitative method for the on-site determination of uric acid in urine using surface-enhanced Raman spectroscopy (SERS) and gold nanoparticle-coated paper as a substrate. A procedure was developed for the rapid preparation of cost-effective SERS substrates that enabled the adequate control of a homogeneous active area and the use of small quantities of gold nanoparticles per substrate. The standard addition method and multivariate curve resolution-alternating least squares (MCR-ALS) were applied to compensate for the matrix effect and to address overlapping bands between uric acid and interference SERS spectra. The proposed methodology demonstrated better performance than conventional univariate methods (in terms of linearity, accuracy and precision), a wide linear range (0-3.5 mmol L(-1)) and an adequate limit of detection (0.11 mmol L(-1)). For the first time, a portable SERS method coupled with chemometrics was developed for the routine analysis of uric acid at clinically relevant concentrations with minimal sample preparation and easy extension for the on-site determination of other biomarkers in complex sample matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5an02398j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!