Transition metal dichalcogenides have been extensively studied as promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER). However, despite the intention to achieve sustainable energy generation, conventional syntheses typically use environmentally damaging reagents and energy-demanding preparation conditions. Hence, we present electrochemical synthesis as a green and versatile alternative to traditional methods. In this fundamental study, we demonstrated the bottom-up synthesis of a mixed WS2/WS3 film-like material via cyclic voltammetry (CV). The film-like material can be directly electrosynthesized on any conductive substrates and renders the catalyst immobilization step redundant. Through stepwise analysis of deposition voltammograms facilitated by straightforward modification of CV conditions, and characterization using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), a two-step mechanism involving the initial WS3 deposition and subsequent partial reduction to WS2 was proposed. The WS2/WS3 material was determined to possess composition of WS2.64. Compared to non-electrosynthesized WSx materials, its predominantly basal orientation limited the heterogeneous electron transfer rate toward surface-sensitive redox couples. However, WS2.64 demonstrated excellent HER activity, with the lowest Tafel slope of 43.7 mV dec(-1) to date; this was attributed to different metal-chalcogen binding strengths within WS2.64. Fundamental understanding of the electrosynthesis process is crucial for green syntheses of inexpensive and highly electrocatalytically active materials for sustainable energy production. Albeit, the process may be different for a myriad of nanomaterials, this study can be exploited for its analyses from which the conclusions were made, to empower electrochemical synthesis as the prime fabrication approach for HER electrocatalyst development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b11109 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
Nanoscale
January 2025
Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.
ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!