On the Structure of Neuronal Population Activity under Fluctuations in Attentional State.

J Neurosci

Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, Bernstein Center for Computational Neuroscience, 72076 Tübingen, Germany, Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005.

Published: February 2016

Unlabelled: Attention is commonly thought to improve behavioral performance by increasing response gain and suppressing shared variability in neuronal populations. However, both the focus and the strength of attention are likely to vary from one experimental trial to the next, thereby inducing response variability unknown to the experimenter. Here we study analytically how fluctuations in attentional state affect the structure of population responses in a simple model of spatial and feature attention. In our model, attention acts on the neural response exclusively by modulating each neuron's gain. Neurons are conditionally independent given the stimulus and the attentional gain, and correlated activity arises only from trial-to-trial fluctuations of the attentional state, which are unknown to the experimenter. We find that this simple model can readily explain many aspects of neural response modulation under attention, such as increased response gain, reduced individual and shared variability, increased correlations with firing rates, limited range correlations, and differential correlations. We therefore suggest that attention may act primarily by increasing response gain of individual neurons without affecting their correlation structure. The experimentally observed reduction in correlations may instead result from reduced variability of the attentional gain when a stimulus is attended. Moreover, we show that attentional gain fluctuations, even if unknown to a downstream readout, do not impair the readout accuracy despite inducing limited-range correlations, whereas fluctuations of the attended feature can in principle limit behavioral performance.

Significance Statement: Covert attention is one of the most widely studied examples of top-down modulation of neural activity in the visual system. Recent studies argue that attention improves behavioral performance by shaping of the noise distribution to suppress shared variability rather than by increasing response gain. Our work shows, however, that latent, trial-to-trial fluctuations of the focus and strength of attention lead to shared variability that is highly consistent with known experimental observations. Interestingly, fluctuations in the strength of attention do not affect coding performance. As a consequence, the experimentally observed changes in response variability may not be a mechanism of attention, but rather a side effect of attentional allocation strategies in different behavioral contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737784PMC
http://dx.doi.org/10.1523/JNEUROSCI.2044-15.2016DOI Listing

Publication Analysis

Top Keywords

response gain
16
shared variability
16
fluctuations attentional
12
attentional state
12
increasing response
12
strength attention
12
attentional gain
12
attention
11
behavioral performance
8
response
8

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Background: In the United States, complete abstinence persists as the standard for demonstrating recovery success from substance use disorders (SUDs), apart from alcohol use disorder (AUD). Although the FDA has recently indicated openness for non-abstinence outcomes as treatment targets, the traditional benchmark of complete abstinence for new medications to treat SUDs remains a hurdle and overshadows other non-abstinent outcomes desired by people with SUDs (e.g.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.

View Article and Find Full Text PDF

Here we describe an approach and overall concept on how to train undergraduate university students to understand basic regulation and integration of glucose and fatty acid metabolism in response to fasting, intake of carbohydrates and aerobic exercise. During lectures and both theoretical and practical sessions, the students read, analyse, and discuss the fundamentals of Randle cycle. They focus on how metabolism is regulated in adipose tissue, skeletal muscle, and liver at a molecular level under various metabolic conditions.

View Article and Find Full Text PDF

The (dys)regulation of energy storage in obesity.

Physiol Rev

January 2025

University of Zurich, Vetsuise Faculty, Institute of Veterinary Physiology, Zurich, Switzerland.

Metabolic energy stored mainly as adipose tissue is homeostatically regulated. There is strong evidence that human body weight () is physiologically regulated, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!