Unlabelled: Orexin (Orx) neurons are known to be involved in the promotion and maintenance of waking because they discharge in association with cortical activation and muscle tone during waking and because, in their absence, waking with muscle tone cannot be maintained and narcolepsy with cataplexy ensues. Whether Orx neurons discharge during waking in association with particular conditions, notably with appetitive versus aversive stimuli or positive versus negative emotions, is debated and considered important in understanding their role in supporting particular waking behaviors. Here, we used the technique of juxtacellular recording and labeling in head-fixed rats to characterize the discharge of Orx neurons during the performance of an associative discrimination task with auditory cues for appetitive versus aversive outcomes. Of 57 active, recorded, and neurobiotin-labeled neurons in the lateral hypothalamus, 11 were immunohistochemically identified as Orx-positive (Orx(+)), whereas none were identified as melanin-concentrating hormone-positive. Orx(+) neurons discharged at significantly higher rates during the tone associated with sucrose than during the tone associated with quinine delivered upon licking. They also discharged at high rates after the tone associated with sucrose. Across periods and outcomes, their discharge was positively correlated with EEG gamma activity and EMG activity, which is indicative of cortical activation and behavioral arousal. These results suggest that Orx neurons discharge in a manner characteristic of reward neurons yet also characteristic of arousal neurons. Accordingly, the Orx neurons may respond to and participate in reward processes while modulating cortical activity and muscle tone to promote and maintain arousal along with learned adaptive behavioral responses.
Significance Statement: Orexin neurons play a critical role in promoting and maintaining a waking state because, in their absence, narcolepsy with cataplexy ensues. Known to discharge during waking and not during sleep, they have also been proposed to be selectively active during appetitive behaviors. Here, we recorded and labeled neurons in rats to determine the discharge of immunohistochemically identified orexin neurons during performance of an associative discrimination task. Orexin neurons responded differentially to auditory cues associated with appetitive sucrose versus aversive quinine, indicating that they behave like reward neurons. However, correlated discharge with cortical and muscle activity indicates that they also behave like arousal neurons and can thus promote cortical activation with behavioral arousal and muscle tone during adaptive waking behaviors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737782 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3903-15.2016 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
(KGM) is used for appetite management. However, KGM's regulation of appetite through hypothalamic neurons and gut microbiota, particularly in nonobese populations, is required to be investigated. This study investigated the differential effects of KGM on appetite and energy metabolism in obese and nonobese mice.
View Article and Find Full Text PDFJ Neurosci
November 2024
Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Sao Paulo, Brazil
Growth hormone (GH) action in the brain regulates neuroendocrine axes, energy and glucose homeostasis, and several neurological functions. The lateral hypothalamic area (LHA) contains numerous neurons that respond to a systemic GH injection by expressing the phosphorylated STAT5, a GH receptor (GHR) signaling marker. However, the potential role of GHR signaling in the LHA is unknown.
View Article and Find Full Text PDFAlteration of motor control during rapid eye movements (REM) sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 are not associated with alpha-synucleinopathies.
View Article and Find Full Text PDFTransl Psychiatry
July 2024
School of Psychology, Swinburne University, Melbourne, VIC, Australia.
This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!