In low-income countries, a growing proportion of the disease burden is attributable to non-communicable diseases (NCDs). There is little knowledge, however, of their impact on wealth, human capital, economic growth or household poverty. This article estimates the risk of being poor after an NCD death in the rural, low-income area of Matlab, Bangladesh. In a matched cohort study, we estimated the 2-year relative risk (RR) of being poor in Matlab households with an NCD death in 2010. Three separate measures of household economic status were used as outcomes: an asset-based index, self-rated household economic condition and total household landholding. Several estimation methods were used including contingency tables, log-binomial regression and regression standardization and machine learning. Households with an NCD death had a large and significant risk of being poor. The unadjusted RR of being poor after death was 1.19, 1.14 and 1.10 for the asset quintile, self-rated condition and landholding outcomes. Adjusting for household and individual level independent variables with log-binomial regression gave RRs of 1.19 [standard error (SE) 0.09], 1.16 (SE 0.07) and 1.14 (SE 0.06), which were found to be exactly the same using regression standardization (SE: 0.09, 0.05, 0.03). Machine learning-based standardization produced slightly smaller RRs though still in the same order of magnitude. The findings show that efforts to address the burden of NCD may also combat household poverty and provide a return beyond improved health. Future work should attempt to disentangle the mechanisms through which economic impacts from an NCD death occur.

Download full-text PDF

Source
http://dx.doi.org/10.1093/heapol/czv134DOI Listing

Publication Analysis

Top Keywords

ncd death
16
risk poor
12
matlab bangladesh
8
household poverty
8
households ncd
8
household economic
8
log-binomial regression
8
regression standardization
8
household
6
ncd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!