Purpose: Azoospermia is one of the major causes of male infertility and is basically classified into obstructive (OA) and non-obstructive azoospermia (NOA). The molecular background of NOA still largely remains elusive. It has been shown that the poly(A)-binding proteins (PABPs) essentially play critical roles in stabilization and translational control of the mRNAs during spermatogenesis.

Methods: In the present study, we aim to evaluate expression levels of the PABP genes, EPAB, PABPC1, and PABPC3, in the testicular biopsy samples and in the isolated spermatocyte (SC) and round spermatid (RS) fractions obtained from men with various types of NOA including hypospermatogenesis (hyposperm), RS arrest, SC arrest, and Sertoli cell-only syndrome (SCO).

Results: In the testicular biopsy samples, both PABPC1 and PABPC3 mRNA expressions were gradually decreased from hyposperm to SCO groups (P < 0.05), whereas there was no remarkable difference for the EPAB expression among groups. The expression levels of cytoplasmically localized PABPC1 and PABPC3 proteins dramatically reduced from hyposperm to SCO groups (P < 0.05). In the isolated SC and RS fractions, the EPAB, PABPC1, and PABPC3 mRNA expressions were gradually decreased from hyposperm to SC arrest groups (P < 0.05). Similarly, both PABPC1 and PABPC3 proteins were expressed at higher levels in the SC and RS fractions from hyposperm group when compared to the SC and RS fractions from either RS arrest or SC arrest group (P < 0.05).

Conclusion: Our findings suggest that observed significant alterations in the PABPs expression may have an implication for development of different NOA forms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785164PMC
http://dx.doi.org/10.1007/s10815-016-0654-zDOI Listing

Publication Analysis

Top Keywords

pabpc1 pabpc3
24
epab pabpc1
12
groups 005
12
genes epab
8
non-obstructive azoospermia
8
expression levels
8
testicular biopsy
8
biopsy samples
8
hyposperm arrest
8
arrest arrest
8

Similar Publications

Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice.

View Article and Find Full Text PDF

Epithelial ovarian carcinoma (EOC) is highly fatal because of the risk of resistance to therapy and recurrence. We performed whole-exome sequencing of blood and tumor tissue pairs of 50 patients with surgically resected EOC. Compared with sensitive patients, platinum-resistant patients had a significantly higher somatic mutational rate in <i>TP53</i> and lower in several genes from the Hippo pathway.

View Article and Find Full Text PDF

MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty.

Nucleic Acids Res

April 2021

State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.

The family of Poly(A)-binding proteins (PABPs) regulates the stability and translation of messenger RNAs (mRNAs). Here we reported that the three members of PABPs, including PABPC1, PABPC3 and PABPC4, were identified as novel substrates for MKRN3, whose deletion or loss-of-function mutations were genetically associated with human central precocious puberty (CPP). MKRN3-mediated ubiquitination was found to attenuate the binding of PABPs to the poly(A) tails of mRNA, which led to shortened poly(A) tail-length of GNRH1 mRNA and compromised the formation of translation initiation complex (TIC).

View Article and Find Full Text PDF

Background: Thyroid cancer is the most common endocrine malignancy, with continuously increasing incidence. Follicular thyroid cancer (FTC) accounts for approximately 10% to 15% of these cases and is known to be associated with several gene mutations. The purpose of this study was to identify novel therapeutic targets in FTC using whole-exome sequencing (WES) and bioinformatics analysis.

View Article and Find Full Text PDF

Purpose: Azoospermia is one of the major causes of male infertility and is basically classified into obstructive (OA) and non-obstructive azoospermia (NOA). The molecular background of NOA still largely remains elusive. It has been shown that the poly(A)-binding proteins (PABPs) essentially play critical roles in stabilization and translational control of the mRNAs during spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!