Centella asiatica (L.) Urban (Apiaceae), a small annual plant that grows in India, Sri Lanka, Malaysia, and other parts of Asia, is well-known as a medicinal herb with a long history of therapeutic uses. The bioactive compounds present in C. asiatica leaves include ursane-type triterpene sapogenins and saponins-asiatic acid, madecassic acid, asiaticoside, and madecassoside. Various bioactivities have been shown for these compounds, although most of the steps in the biosynthesis of triterpene saponins, including glycosylation, remain uncharacterized at the molecular level. This chapter describes an approach that integrates partial enzyme purification, proteomics methods, and transcriptomics, with the aim of reducing the number of cDNA candidates encoding for a glucosyltransferase involved in saponin biosynthesis and facilitating the elucidation of the pathway in this medicinal plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3393-8_5 | DOI Listing |
Carbohydr Res
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden. Electronic address:
The serological properties of the O-antigen polysaccharide region of the lipopolysaccharides are used to differentiate E. coli strains into serogroups. In this study, we report the structure elucidation of the O-specific chain of E.
View Article and Find Full Text PDFmBio
January 2025
Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.
Unlabelled: Streptolysin O (SLO) is a virulence determinant of group A (), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!