Background: Intraperitoneal chemotherapy is limited by tissue penetration. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been shown to improve drug uptake by utilizing the physical properties of gas and pressure. This study investigated the effect of adding electrostatic precipitation to further enhance the pharmacologic properties of this technique.

Methods: A comparative study was performed using an in vivo porcine model. There were 3 cases in each group, PIPAC and electrostatic precipitation pressurized intraperitoneal aerosol chemotherapy (ePIPAC), plus 1 negative control comparing intraperitoneal distribution and tissue uptake of 2 tracer substances (toluidine blue and DT01). Tracer uptake was determined by measuring DT01 in tissue and peritoneal fluid at the end of each procedure.

Results: Electrostatic precipitation of the aerosol was technically feasible in all ePIPAC animals. The aerosol was cleared completely from the visual field within 15 s in the ePIPAC group versus 30 min in the PIPAC group. The peritoneal surface was homogeneously stained in both groups. After 30 min, 1.5 % remaining DT01 was measured in samples of ePIPAC-treated peritoneal fluid versus 15 % in PIPAC animals (p = 0.01). Tissue concentration was increased after ePIPAC versus PIPAC (p = 0.06).

Conclusions: ePIPAC is technically feasible and improves tissue uptake of 2 tracer substances compared to PIPAC by up to tenfold. Intraperitoneal distribution was homogeneous in both groups. ePIPAC has the potential to allow more efficient drug uptake, further dose reduction, a significant shortening of the time required for PIPAC application, and improved health and safety measures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149560PMC
http://dx.doi.org/10.1245/s10434-016-5108-4DOI Listing

Publication Analysis

Top Keywords

electrostatic precipitation
16
pressurized intraperitoneal
12
intraperitoneal aerosol
12
aerosol chemotherapy
12
chemotherapy epipac
8
drug uptake
8
intraperitoneal distribution
8
tissue uptake
8
uptake tracer
8
tracer substances
8

Similar Publications

Unveiling the crucial role of iron oxide transformation in simultaneous immobilization of nanoplastics and organic matter.

Sci Total Environ

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF

Optimizing soil remediation with multi-functional L-PH hydrogel: Enhancing water retention and heavy metal stabilization in farmland soil.

Sci Total Environ

December 2024

Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:

Agricultural soils face severe challenges, including water scarcity and heavy metal contamination. Optimizing soil remediation efficiency while minimizing inputs is essential. This study assessed the water retention and heavy metal adsorption properties of L-PH hydrogel through aqueous experiments.

View Article and Find Full Text PDF

Illite Dissolution under Sodium Hydroxide Solution: Insights from Reactive Molecular Dynamics.

ACS Omega

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China.

In alkali/surfactant/polymer (ASP) flooding systems, alkalis react with clay minerals such as Illite, montmorillonite, and kaolinite, leading to reservoir damage and impacting oil recovery rates. Therefore, studying the dissolution effects of strong alkalis on clay minerals is crucial for improving oil recovery. This study uses Illite as a representative clay mineral and employs the ReaxFF reactive force field and molecular dynamics simulations to model its dissolution in NaOH solution.

View Article and Find Full Text PDF

Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!