We report a 13-fold increase in electrical contact conductivity Σc upon introducing a 1,8-octanedithiol (ODT) monolayer at Cu-Bi2Te3 interfaces. In contrast introducing ODT at Ni-Bi2Te3 interfaces results in a 20% decrease in Σc. Rutherford backscattering spectrometry, X-ray diffraction and electron spectroscopy analyses indicate that metal-sulfur and sulfur-Bi2Te3 bonds at metal-Bi2Te3 interfaces inhibit chemical mixing, curtail metal-telluride formation, and suppress oxidation. Suppressing p-type Cu2Te favors electrical transport across Cu-metallized n-type Bi2Te3, whereas inhibiting the formation of Ohmic-contact-promoting NixTey compromises the electrical conductance at Ni-Bi2Te3 interfaces. Our findings illustrate that molecular nanolayers could be attractive for manipulating interface chemistry and phase formation for tailoring electrical transport across metal-thermoelectric interfaces for solid-state refrigeration applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b08990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!