The electrochemical reduction of CO(2) has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO(2) in water, the maximum CO(2) reduction current which could be drawn falls in the range of 0.01-0.02 A cm(-2). This is at least an order of magnitude lower current density than the requirement to make CO(2)-electrolysis a technically and economically feasible option for transformation of CO(2) into chemical feedstock or fuel thereby closing the CO(2) cycle. This work attempts to give a short overview on the status of electrochemical CO(2) reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2015.769 | DOI Listing |
CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Enalos Research and Development IKE, 15234 Athens, Greece.
This research aimed to investigate the potential of using alkali activation technology to valorize steel slag and bauxite residue for the production of high-performance pavement blocks. By utilizing these industrial by-products, the study seeks to reduce their environmental impact and support the development of sustainable construction materials. Lab-scale testing showed that bauxite pavers showed a decrease in mechanical strength with increasing replacement of ordinary Portland cement.
View Article and Find Full Text PDFBiomedicines
January 2025
I-MVET Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, 1749-024 Lisbon, Portugal.
Promoting rapid healing is a concern in skin wound treatment, as the increased pain and the loss of functional ability when wounds become chronic create a complex problem to manage. This scoping review aimed to explore the literature and synthesize existing knowledge on the therapeutic use of CO in treating cutaneous wounds. The literature was selected using previously defined inclusion and exclusion criteria, and 22 articles were selected for data extraction.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Formamide condensation with Ni can generate the NC structure, widely recognized as an efficient catalyst for electrocatalytic CO reduction reaction (CORR). To improve the utilization efficiency of Ni atoms, we introduced metal oxides as substrates to modulate the growth of a formamide-Ni (FA-Ni) condensate. FA-Ni@TiO demonstrated 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!