Purpose: We initiated the Genetics of Glucose regulation in Gestation and Growth (Gen3G) prospective cohort to increase our understanding of biological, environmental and genetic determinants of glucose regulation during pregnancy and their impact on fetal development.
Participants: Between January 2010 and June 2013, we invited pregnant women aged ≥ 18 years old who visited the blood sampling in pregnancy clinic in Sherbrooke for their first trimester clinical blood samples: 1034 women accepted to participate in our cohort study.
Findings To Date: At first and second trimester, we collected demographics and lifestyle questionnaires, anthropometry measures (including fat and lean mass estimated using bioimpedance), blood pressure, and blood samples. At second trimester, women completed a full 75 g oral glucose tolerance test and we collected additional blood samples. At delivery, we collected cord blood and placenta samples; obstetrical and neonatal clinical data were abstracted from electronic medical records. We also collected buffy coats and extracted DNA from maternal and/or offspring samples (placenta and blood cells) to pursue genetic and epigenetic hypotheses. So far, we have found that low adiponectin and low vitamin D maternal levels in first trimester predict higher risk of developing gestational diabetes.
Future Plans: We are now in the phase of prospective follow-up of mothers and offspring 3 and 5 years postdelivery to investigate the consequences of maternal dysglycaemia during pregnancy on offspring adiposity and metabolic profile.
Trial Registration Number: NCT01623934.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746442 | PMC |
http://dx.doi.org/10.1136/bmjopen-2015-010031 | DOI Listing |
Background: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!