Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January-February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca-HCO3 to Mg-SO4 type and are controlled by water-rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards's diagrams. This aquifer has been classified as "excellent water" serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-016-5124-7DOI Listing

Publication Analysis

Top Keywords

oum ali-thelepte
12
multivariate statistical
8
ali-thelepte aquifer
8
water quality
8
groundwater samples
8
groundwater
7
water
7
aquifer
6
application multivariate
4
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!