Monte Carlo computer simulation is described for the dodecamer d(CGCGAATTCGCG) together with 1777 water molecules at an environmental density of 1 gm/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the non-bonded interactions from the AMBER 3.0 force field. The stimulation was subjected to proximity analysis to obtain solute coordination numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on the native dodecamer by Dickerson and coworkers.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.1989.10506539DOI Listing

Publication Analysis

Top Keywords

monte carlo
8
crystallographic ordered
8
ordered water
8
water sites
8
groove side
8
theoretical study
4
study aqueous
4
aqueous hydration
4
hydration canonical
4
canonical dcgcgaattcgcg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!