Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust.

Nature

Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street Box 1846, Providence, Rhode Island 02906, USA.

Published: February 2016

Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature16501DOI Listing

Publication Analysis

Top Keywords

subduction zones
12
subducting oceanic
8
oceanic crust
8
intermediate-depth earthquakes
8
dehydration reactions
8
unstable fault
8
fault slip
8
frictional sliding
8
lawsonite
6
fault
5

Similar Publications

Apatite is widely used as an indicator mineral to reflect the characteristics and petrogenesis of host magma. In this study, we present apatite geochemical and in-situ Sr-Nd isotopic data of monzogranite, granodiorite and dioritic enclave in the eastern Songnen-Zhangguangcai Range Massif, aiming to fingerprinting their petrogenesis and magmatic evolution processes. Based on apatite textures and geochemistry characteristics, the apatites were categorized into two distinct groups.

View Article and Find Full Text PDF

Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones.

Proc Natl Acad Sci U S A

December 2024

Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.

Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.

View Article and Find Full Text PDF

The Almyropotamos tectonic window on southern Evia island in the NW Aegean Sea divides two high pressure-low temperature metamorphic units, representing distinct Hellenic thrust sheets. Ductile thinning along the major low-angle Evia Shear Zone has closely juxtaposed the lower (Basal Unit) marble-flysch sequence structurally below Styra marbles (Cycladic Blueschist Unit). The partially attenuated flysch comprises a matrix dominated by pelitic schist, with dispersed cm- to hm-scale blocks of marble, carbonate schist, quartzite, and metabasite.

View Article and Find Full Text PDF

Immiscible metamorphic water and methane fluids preserved in carbonated eclogite.

Commun Chem

November 2024

Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China.

Subduction zones metamorphic fluids are pivotal in geological events such as volcanic eruptions, seismic activity, mineralization, and the deep carbon cycle. However, the mechanisms governing carbon mobility in subduction zones remain largely unresolved. Here we present the first observations of immiscible HO-CH fluids coexisting in retrograde carbonated eclogite from the Western Tianshan subduction zone, China.

View Article and Find Full Text PDF

Numerical modeling the process of deep slab dehydration and magmatism.

Sci Rep

November 2024

College of Transportation Engineering of Nanjing Tech, Nanjing Tech University, Nanjing, 211816, China.

This study uses a 2D high-resolution thermo-mechanical coupled model to investigate the dynamic processes of deep plate hydration, dehydration, and subsequent magmatic activity in ocean-continent subduction zones. We reveal the pathways and temporal evolution of water transport to the deep mantle during the subduction process. Plate dehydration plays a critical role in triggering partial melting of the deep mantle and related magmatic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!