A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field.

Nature

Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Berlin-Adlershof, 12489 Berlin, Germany.

Published: February 2016

Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 10(9) kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature16535DOI Listing

Publication Analysis

Top Keywords

gravity field
12
nucleus comet
8
comet 67p/churyumov-gerasimenko
8
low-density highly
8
highly porous
8
bulk density
8
times dust
8
dust ice
8
nucleus
6
mass
5

Similar Publications

Sedimentation and structure of squirmer suspensions under gravity.

Soft Matter

January 2025

Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.

The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.

View Article and Find Full Text PDF

Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.

View Article and Find Full Text PDF

As gravity exploration technology advances, gravity gradient measurement is becoming an increasingly important method for gravity detection. Airborne gravity gradient measurement is widely used in fields such as resource exploration, mineral detection, and oil and gas exploration. However, the motion and attitude changes of the aircraft can significantly affect the measurement results.

View Article and Find Full Text PDF

Strongly Coupled 𝒫𝒯-Symmetric Models in Holography.

Entropy (Basel)

December 2024

Instituto de Física Teórica UAM/CSIC, Campus de Cantoblanco, c/Nicolás Cabrera 13-15, 28049 Madrid, Spain.

Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.

View Article and Find Full Text PDF

Modified field method for testing activated sludge condition in chambers with variable wastewater levels.

J Environ Manage

January 2025

Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Piatkowska St. 94A, 60-649, Poznan, Poland. Electronic address:

The paper presents a proposal to modify a field method of testing the condition of activated sludge using a 30-min volume of sludge (settling test). To verify the validity of the modified method of testing the condition of activated sludge, field tests were performed in two onsite wastewater treatment plants. In these plants, the reaction chambers were fed by gravity from the primary sedimentation tank throughout the day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!