Kabuki syndrome (KS) is a dominantly inherited disorder mainly due to de novo pathogenic variation in KMT2D or KDM6A genes. Initially, a representative cohort of 14 Czech cases with clinical features suggestive of KS was analyzed by experienced clinical geneticists in collaboration with other specialties, and observed disease features were evaluated according to the 'MLL2-Kabuki score' defined by Makrythanasis et al. Subsequently, the aforementioned genes were Sanger sequenced and copy number variation analysis was performed by MLPA, followed by genome-wide array CGH testing. Pathogenic variants in KMT2D resulting in protein truncation in 43% (6/14; of which 3 are novel) of all cases were detected, while analysis of KDM6A was negative. MLPA analysis was negative in all instances. One female patient bears a 6.6 Mb duplication of the Xp21.2-Xp21.3 region that is probably disease causing. Subjective KS phenotyping identified predictive clinical features associated with the presence of a pathogenic variant in KMT2D. We provide additional evidence that this scoring approach fosters prioritization of patients prior to KMT2D sequencing. We conclude that KMT2D sequencing followed by array CGH is a diagnostic strategy with the highest diagnostic yield.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.12754DOI Listing

Publication Analysis

Top Keywords

kabuki syndrome
8
clinical features
8
array cgh
8
kmt2d sequencing
8
kmt2d
5
molecular genetic
4
analysis
4
genetic analysis
4
analysis czech
4
czech kabuki
4

Similar Publications

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

The Kabuki syndrome (KS) is a rare congenital disease that has two different types, KS1 and KS2, with variant in epigenetic gene KMT2D and KDM6A, respectively. It is associated with multiple abnormalities such as (developmental delay, atypical facial features, cardiac anomalies, minor skeleton anomalies, genitourinary anomalies, and mild to moderate intellectual disability). This syndrome can lead to neonatal hypoglycemia that results from hyperinsulinemia and electrolyte abnormalities.

View Article and Find Full Text PDF

Objective: To explore the clinical and genetic characteristics of two children diagnosed with two rare genetic diseases simultaneously.

Methods: Two children with comorbidity of two genetic diseases due to dual genetic mutations diagnosed at the Third Affiliated Hospital of Zhengzhou University respectively in May 2022 and March 2023 were selected as the study subjects. Clinical and genetic data of the two children were retrospectively analyzed.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!