Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats.

Am J Physiol Renal Physiol

Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California; Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas

Published: May 2016

Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867313PMC
http://dx.doi.org/10.1152/ajprenal.00513.2015DOI Listing

Publication Analysis

Top Keywords

kidney function
16
serum urine
12
hamrs2-fed rats
12
resistant starch
8
chronic kidney
8
kidney disease
8
cecal contents
8
contents serum
8
gut
6
kidney
6

Similar Publications

Background: Recent studies revealed an association between small kidney volume and progression of kidney dysfunction in particular settings such as kidney transplantation and transcatheter aortic valve implantation. We hypothesized that kidney volume was associated with the incidence of kidney-related adverse outcomes such as worsening renal function (WRF) in patients with acute heart failure (AHF).

Methods: This study was a single-center retrospective cohort study.

View Article and Find Full Text PDF

Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.

View Article and Find Full Text PDF

Acute kidney injury (AKI) in paediatric kidney transplant recipients is common. Infection including urinary tract infection (UTI) and rejection are the most common causes in children. Surgical complications often cause AKI early post-transplant, whereas BK polyomavirus nephropathy rarely occurs in the first month post-transplant.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Renal ischaemia due to renal artery stenosis produces two differing responses - a juxtaglomerular hypertensive response and cortical renal dysfunction. The reversibility of renal impairment is not predictable, and thus renal revascularisation is controversial. This study aims to test the hypothesis that the hypertensive response to renal ischaemia reflects viable renal parenchyma, and thus could be used to predict the recovery in renal function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!