Response to Re: Contact lens management of keratoconus.

Clin Exp Optom

Melbourne, Australia.

Published: January 2016

Download full-text PDF

Source
http://dx.doi.org/10.1111/cxo.12348DOI Listing

Publication Analysis

Top Keywords

response contact
4
contact lens
4
lens management
4
management keratoconus
4
response
1
lens
1
management
1
keratoconus
1

Similar Publications

Background/objectives: Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen.

View Article and Find Full Text PDF

To enhance the sliding tribological performance between PTFE and 40#steel (AISI 1040) under full film lubrication conditions, laser surface texturing (LST) technology was employed to prepare micro-dimples on the contact surfaces of 40# steel discs. The Box-Behnken design response surface methodology (BBD-RSM) was applied to optimize the micro-dimple parameters. Coefficients of friction (COFs), wear losses and worn contact surfaces of the PTFE-40# steel tribo-pairs were researched through repeated wear tests, as lubricated with sufficient anti-wear hydraulic oil.

View Article and Find Full Text PDF

Robotic devices with integrated tactile sensors can accurately perceive the contact force, pressure, sliding, and other tactile information, and they have been widely used in various fields, including human-robot interaction, dexterous manipulation, and object recognition. To address the challenges associated with the initial value drift, and to improve the durability and accuracy of the tactile detection for a robotic dexterous hand, in this study, a flexible tactile sensor is designed with high repeatability by introducing a supporting layer for pre-separation. The proposed tactile sensor has a detection range of 0-5 N with a resolution of 0.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Cobalt-bonded tungsten carbide (WC-Co) is widely used in heavy-duty machining applications due to its exceptional hardness and wear resistance, and it is increasingly being adopted in industries such as aerospace and the automotive sector, among others. Its superior mechanical properties make it difficult to machine with conventional methods such as turning or milling. Electrical Discharge Machining (EDM) has emerged as an efficient alternative, as it allows for the machining of hard materials to be carried out without direct contact between the tool and the workpiece, provided that the material has sufficient electrical conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!