Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice.

Toxicol Lett

Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA. Electronic address:

Published: March 2016

Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774530PMC
http://dx.doi.org/10.1016/j.toxlet.2016.01.019DOI Listing

Publication Analysis

Top Keywords

microsomal epoxide
8
epoxide hydrolase
8
mice
8
extrapulmonary airways
8
airways mice
8
mice susceptible
8
metabolites
6
cytotoxicity
5
naphthalene cytotoxicity
4
cytotoxicity microsomal
4

Similar Publications

Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.

View Article and Find Full Text PDF

Dietary high lipid and high plant-protein affected growth performance, liver health, bile acid metabolism and gut microbiota in groupers.

Anim Nutr

December 2024

Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China.

Article Synopsis
  • High lipid diets (HLD) and high plant-protein diets (HPD) can reduce the need for fishmeal in fish diets but may harm liver health and growth performance in pearl gentian groupers.
  • A study found that both HLD and HPD led to significant decreases in fish weight gain, growth rate, and feed intake compared to a control diet, with a combined high lipid-high plant-protein diet (HLPD) worsening these effects.
  • Liver health was negatively impacted, showing increased cholesterol and triglyceride levels, inflammation, and oxidative stress, along with altered gene expression linked to bile acid metabolism.
View Article and Find Full Text PDF

The Association between EPHX1 Gene Polymorphisms and Lung Cancer among Jordanian People.

Asian Pac J Cancer Prev

November 2024

Department of Physiology and Biochemistry, School of Medicine, University of Jordan, Amman, Jordan.

Article Synopsis
  • The study aimed to assess whether genetic variations in the EPHX1 gene are linked to lung cancer susceptibility among Jordanian patients.
  • A total of 218 individuals were analyzed, including 108 lung cancer patients and 110 matched controls, using PCR-RFLP to investigate specific polymorphisms in the gene.
  • The results indicated no significant differences in genotypes between patients and controls, suggesting that EPHX1 polymorphisms do not significantly influence lung cancer risk in this population.
View Article and Find Full Text PDF

Strategies for the Immobilization and Signal Amplification of a Double Nanobody Sandwich ELISA for Human Microsomal Epoxide Hydrolase.

Anal Chem

December 2024

Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States.

The microsomal epoxide hydrolase (mEH) is important in the detoxification of carcinogens in the liver and other tissues but is also a blood biomarker of hepatitis and liver cancer. Improved analytical methods are needed for the study of its role in the metabolism of xenobiotics and endogenous roles as a blood biomarker of diseases. The development of a double nanobody sandwich ELISA offers significant improvements over traditional polyclonal or monoclonal antibody-based assays, enhancing both the homogeneity and the stability of assay production.

View Article and Find Full Text PDF

Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!