Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb-Zn ores and solid smelting wastes from a large Pb-Zn smelting plant - a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb-Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb-Zn ore materials were relatively enriched with Tl (15.1-87.7 mg kg(-1)), while even higher accumulation existed in the electrostatic dust (3280-4050 mg kg(-1)) and acidic waste (13,300 mg kg(-1)). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10-30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb-Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.01.046 | DOI Listing |
Huan Jing Ke Xue
January 2025
Shaanxi Environmental Monitoring Center, Xi'an 710006, China.
To identify the spatial distribution patterns and assess the ecological risks associated with soil heavy metal pollution in the southern region of Hunan Province, a total of 362 surface soil samples were collected from the studied area. This study employed multivariate statistics and geographic information systems (GIS) to investigate the spatial distribution pattern of soil metals (Cd, Hg, As, Pb, Zn, Ni, Mn, Tl, and Sb). Furthermore, the pollution sources and source-specific ecological risk of heavy metals were quantified by combining the positive matrix factorization (PMF) model and the comprehensive ecological risk index model.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China. Electronic address:
Current total concentration-based methods for source attribution and risk assessment often overestimate metal risks, thereby impeding the formulation of effective risk management strategies. This study aims to develop a framework for source-specific risk assessment based on metal bioavailability in surface river sediments from a human-dominated seaward catchment in eastern China. Metal bioavailability was quantified using chemical fractionation results, and source apportionment was conducted using the positive matrix factorization (PMF) model.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Sci Total Environ
October 2024
School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China. Electronic address:
The downward migration of soil heavy metal(loid)s (HMs) at smelting sites poses a significant risk to groundwater. Therefore, it is requisite for pollution control to determine the pollution characteristics of soil HMs and their migration risks to groundwater. 198 soil samples collected from a Pb-Zn smelting site were classified into 6 clusters by self-organizing map (SOM) and K-means clustering.
View Article and Find Full Text PDFSci Total Environ
October 2024
School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!