Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201509653 | DOI Listing |
Molecules
January 2025
Graduate School of Science, Technology and Innovation, Kobe University, 1-1, Rokkodai, Kobe 657-0013, Hyogo, Japan.
Muconic acid, a crucial precursor in synthesizing materials like PET bottles and nylon, is pivotal for the anticipated growth in the textiles and plastics industries. This study presents a novel chemical synthesis route for ,-muconic acid (ccMA) using catechol. Biochemical methods face scale-up challenges due to microorganism sensitivity and complex extraction processes, while chemical methods involve environmentally harmful substances and have low yields.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration disease (IVDD) is a prevalent orthopedic condition that causes chronic lower back pain, imposing a substantial economic burden on patients and society. Despite its high incidence, the pathophysiological mechanisms of IVDD remain incompletely understood.
Objective: This study aimed to identify metabolomic alterations in IVDD patients and explore the key metabolic pathways and metabolites involved in its pathogenesis.
Biol Trace Elem Res
December 2024
Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
Occupational exposure to pollutants may cause health-damaging effects in humans. Genotoxicity assays can be used to detect the toxic effects of pollutants. In the present study, we evaluated genetic damage in three populations occupationally exposed to benzene, pyrenes, and agrochemicals and assessed the possible influence of titanium (Ti) co-exposure.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625.
Levulinic acid (LA) is a key platform molecule with current applications in the synthesis of several commodity chemicals, including amino-levulinic acid, succinic acid, and valerolactone. In contrast to existing petroleum-based synthesis pathway, biomass-derived --muconic acid (MA) offers a sustainable route to synthesize LA. Here, we show the complete decarboxylation of neat MA to LA without solvent at atmospheric pressure and mild temperature.
View Article and Find Full Text PDFCrit Rev Biotechnol
December 2024
Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
Muconic acid (MA) is a valuable dicarboxylic acid with three isomers that are extensively utilized in textile and chemical industries. Traditionally, the chemical synthesis of MA consumes nonrenewable petrochemical raw materials and causes significant environmental problems. With the rapid increase in demand for MA, eco-friendly biosynthetic technologies with renewable sources are becoming ideal alternative solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!