A diyne functionalized 4,6-O-benzylidene β-d-galactopyranoside gelator, which can align its diyne motifs upon self-assembly (gelation) have been synthesized. The organogel formed by this gelator undergoes topochemical polymerization to polydiacetylene (PDA) under photoirradiation. This strategically designed gelator has been used to make semi-conducting fabrics. By developing the organogel on the fabrics, the gelator molecules were made not only to self-assemble on the fibers, but also to adhere to fabrics through hydrogen bonding. UV irradiation of the gel-coated fabric/fiber resulted in the formation of PDA on fibers. The benzylidene motif could be deprotected to get PDA with pendant free sugars that strongly bind to the cotton fibrils through multiple hydrogen bonds. Conductivity measurements revealed the semiconducting nature of these fabrics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201507475DOI Listing

Publication Analysis

Top Keywords

semiconducting fabrics
4
fabrics in situ
4
in situ topochemical
4
topochemical synthesis
4
synthesis polydiacetylene
4
polydiacetylene dimension
4
dimension organogels
4
organogels diyne
4
diyne functionalized
4
functionalized 46-o-benzylidene
4

Similar Publications

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Fabricating organic semiconducting materials into large-scale, well-organized architectures is critical for building high-performance molecular electronics. While graphene nanoribbons (GNRs) hold enormous promise for various device applications, their assembly into a well-structured monolayer or multilayer architecture poses a substantial challenge. Here, we report the preparation of length-defined monodisperse GNRs via the integrated iterative binomial synthesis (IIBS) strategy and their self-assembly into submicrometer architectures with long-range order, uniform orientation, as well as regular layers.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS) nanoribbons as small as sub-10 nm in width.

View Article and Find Full Text PDF

Electrical performances of a biphenyl-derived amido Schiff base ligand L and its dinuclear Al(iii) complex (complex 1) were investigated in a metal-semiconductor (MS) junction. Electrical studies revealed that complex 1 significantly enhanced the electrical conductivity and improved the characteristics of a Schottky barrier diode (SBD). The - characteristics demonstrated that complexation of ligand L with Al(iii) ion increased the conductivity by two orders of magnitude (conductivity of L = 1.

View Article and Find Full Text PDF

Study of High Performance Nanoscale Channel Length Vertical Transistors with a Self-Aligned Blocking Layer.

ACS Appl Mater Interfaces

January 2025

Department of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.

A transistor design employing all vertically stacked components has attracted considerable attention due to the simplicity of the fabrication process and the high conductivity easily realized by achieving nanolevel short channel lengths with two-dimensional current paths. However, fundamental issues, specifically the blocking of the gate electrical field to the semiconductive channel layer and high leakage current at the "off" state, have impeded this configuration in becoming a major transistor design. To address these issues, it has been proposed to introduce a blocking layer (BL) with embedded hole structures and source electrode with embedded hole structures, enhancing gate field penetration and carrier modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!