Influence of Ethanol as a Co-Solvent in Cyclodextrin Inclusion Complexation: A Molecular Dynamics Study.

Sci Pharm

School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand.

Published: February 2016

Molecular dynamics (MD) simulations were used to investigate the dynamics and host-guest interactions of the inclusion complexes between a potent anti-HIV agent, UC781, and three different types of cyclodextrins (CDs) including βCD, 2,6-dimethyl-βCD (MβCD), and 2-hydroxypropyl-βCD (HPβCD) in aqueous solution with ethanol (EtOH) as a co-solvent. The MD simulation results revealed that EtOH as the co-solvent and the type of cyclodextrin affected the inclusion complex formation. From this study, UC781/MβCD provided the most stable inclusion complex. The competition for the cavity of βCD between UC781 and EtOH and the ensuing occupation of βCD cavities by EtOH resulted in a weaker interaction between βCD and UC781. In HPβCD, a supramolecular complex of UC781-HPβCD-EtOH was formed. The EtOH could easily fill the residual void space of the interior of unoccupied HPβCD due to the movement of UC781. In MβCD, the strong hydrogen bond interactions between the UC781 amide group and the secondary hydroxyl groups of MβCD significantly stabilized the inclusion complex in the presence of EtOH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727776PMC
http://dx.doi.org/10.3797/scipharm.1412-08DOI Listing

Publication Analysis

Top Keywords

inclusion complex
12
cyclodextrin inclusion
8
molecular dynamics
8
etoh co-solvent
8
βcd uc781
8
etoh
6
inclusion
5
uc781
5
influence ethanol
4
ethanol co-solvent
4

Similar Publications

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information.

View Article and Find Full Text PDF

β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Cancer, characterized by uncontrolled growth and spread of abnormal cells potentially influencing almost all tissues in the body, is one of the most devastating and lethal diseases throughout the world. Chemotherapy is one of the principal approaches for cancer treatment, but multidrug resistance and severe side effects represent the main barriers to the success of therapy, creating a vital need to develop novel chemotherapeutic agents. The 1,2,3-triazole moiety can be conveniently constructed by "click chemistry" and could exert diverse noncovalent interactions with various enzymes in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!