Diabetes mellitus is a common disease and its prevalence is increasing worldwide. In various studies up to 30%-70% of patients present dysfunction and complications related to the gut. To date several clinical studies have demonstrated that autonomic nervous system neuropathy and generalized neuropathy of the central nervous system (CNS) may play a major role. This systematic review provides an overview of the neurodegenerative changes that occur as a consequence of diabetes with a focus on the CNS changes and gastrointestinal (GI) dysfunction. Animal models where diabetes was induced experimentally support that the disease induces changes in CNS. Recent investigations with electroencephalography and functional brain imaging in patients with diabetes confirm these structural and functional brain changes. Encephalographic studies demonstrated that altered insular processing of sensory stimuli seems to be a key player in symptom generation. In fact one study indicated that the more GI symptoms the patients experienced, the deeper the insular electrical source was located. The electroencephalography was often used in combination with quantitative sensory testing mainly showing hyposensitivity to stimulation of GI organs. Imaging studies on patients with diabetes and GI symptoms mainly showed microstructural changes, especially in brain areas involved in visceral sensory processing. As the electrophysiological and imaging changes were associated with GI and autonomic symptoms they may represent a future therapeutic target for treating diabetics either pharmacologically or with neuromodulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724575 | PMC |
http://dx.doi.org/10.4239/wjd.v7.i2.14 | DOI Listing |
Eur Psychiatry
January 2025
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
Background: Temperature increases in the context of climate change affect numerous mental health outcomes. One such relevant outcome is involuntary admissions as these often relate to severe (life)threatening psychiatric conditions. Due to a shortage of studies into this topic, relationships between mean ambient temperature and involuntary admissions have remained largely elusive.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
Background: Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks.
Objective: To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear.
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
Mol Med Rep
March 2025
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.
Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!