AI Article Synopsis

Article Abstract

In this study, we report a novel assay for the combined on site detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA), through a colorimetric biosensing system for AFB1 and a fluorimetric detection for OTA, exploiting the capability of the portable fibre optic spectrometer to perform both analyses. AFB1 was detected using the acetylcholinesterase (AChE) enzyme that is inhibited by this toxin, and the degree of inhibition was quantified by the Ellman's spectrophotometric method, obtaining a detection limit of 10 µg L(-1). OTA quantification was performed by monitoring its intrinsic fluorescence in methanol, reaching a detection limit of 0.1 µg L(-1). In order to successfully apply the analytical tool in the food analysis, immunoaffinity columns were used. Clean-up and quantification of both AFB1 and OTA in millet samples was obtained by HPLC-dedicated AflaOchra-Test HPLC™ (Vicam™) and Afla-OtaCLEAN™ (LC-Tech) immunoaffinity columns, followed by absorption/fluorescence detection. Millet samples which were fortified with both OTA (50 µg kg(-1)) and AFB1 (20 µg kg(-1)), gave recovery values of 100 ± 6% for OTA, and 110 ± 10% for AFB1, using AflaOchra-Test HPLC™. Single OTA clean-up and quantification in wine samples was obtained, using an OchraTest immunoaffinity column (Vicam™), reaching a detection limit of 0.3 µg L(-1) and recovery values between 80% and 120%. These results demonstrated the possibility of employing a single clean-up and a cost-effective, and easy to use analytical system for both AFB1 and OTA detection at µg kg(-1) (ppb) level. Furthermore, in the case of positive samples, they could be analysed further, using standard chromatographic procedures, without any additional clean-up step, since the same extraction procedure of standard method is proposed in our method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2015.12.048DOI Listing

Publication Analysis

Top Keywords

detection limit
12
limit µg
12
µg l-1
12
µg kg-1
12
detection
8
ota
8
system afb1
8
reaching detection
8
immunoaffinity columns
8
clean-up quantification
8

Similar Publications

A novel cross-priming amplification technique combined with lateral flow strips for rapid and visual detection of zoonotic Toxoplasma gondii.

Vet Parasitol

January 2025

Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China. Electronic address:

Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

Mikrochim Acta

January 2025

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals.

View Article and Find Full Text PDF

The detection of disease-related protein biomarkers plays a crucial role in the early diagnosis, treatment, and monitoring of diseases. The concentrations of protein biomarkers can vary significantly in different diseases or stages of the same disease. However, most of the existing analytical methods cannot simultaneously meet the requirements of high sensitivity and a wide dynamic range.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!