The insulin/IGF-1 signalling (IIS) pathway plays an important role in the regulation of larval diapause, the long-lived growth arrest state called dauer arrest, in Caenorhabditis elegans. In this nematode, 40 insulin-like peptides (ILPs) have been identified as putative ligands of the IIS pathway; however, it remains unknown how ILPs modulate larval diapause. Here we show that the secretory polarity of INS-35 and INS-7, which suppress larval diapause, is changed in the intestinal epithelial cells at larval diapause. These ILPs are secreted from the intestine into the body cavity during larval stages. In contrast, they are secreted into the intestinal lumen and degraded during dauer arrest, only to be secreted into the body cavity again when the worms return to developmental growth. The process that determines the secretory polarity of INS-35 and INS-7, thus, has an important role in the modulation of larval diapause.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742890 | PMC |
http://dx.doi.org/10.1038/ncomms10573 | DOI Listing |
Insects
January 2025
Zoological Institute, Russian Academy of Sciences, Universitetskaya 1, 199034 St. Petersburg, Russia.
Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (-10 °C) and heat (43 °C) shocks experienced for at least 20-30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid .
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Department of Agricultural Science, Graduate School of Sustainability Science.
FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Agricultural Science, Graduate School of Sustainability Science, Tottori, Japan.
The nematode Caenorhabditis elegans is an excellent model organism for elucidating higher life phenomena. C. elegans and humans are common in many aspects.
View Article and Find Full Text PDFZootaxa
May 2024
Plant protection laboratory in agricultural and natural environments against crop pests; Department of Agricultural and Forestry Zoology; ENSA; El Harrach; Algiers; Algeria.
Cell Rep
November 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:
Capturing the genetic diversity of different wild populations is crucial for unraveling the mechanisms of adaptation and establishing links between genome evolution and local adaptation. The Asian corn borer (ACB) moth has undergone natural selection during its adaptative evolution. However, structural variants (SVs), which play significant roles in these adaptation processes, have not been previously identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!