As accelerometers are commonly used for 24-h measurements of daily activity, methods for separating waking from sleeping time are necessary for correct estimations of total daily activity levels accumulated during the waking period. Therefore, an algorithm to determine wake and bed times in 24-h accelerometry data was developed and the agreement of this algorithm with self-report was examined. One hundred seventy-seven participants (aged 40-75 years) of The Maastricht Study who completed a diary and who wore the activPAL3™ 24 h/day, on average 6 consecutive days were included. Intraclass correlation coefficient (ICC) was calculated and the Bland-Altman method was used to examine associations between the self-reported and algorithm-calculated waking hours. Mean self-reported waking hours was 15.8 h/day, which was significantly correlated with the algorithm-calculated waking hours (15.8 h/day, ICC = 0.79, P = < 0.001). The Bland-Altman plot indicated good agreement in waking hours as the mean difference was 0.02 h (95% limits of agreement (LoA) = -1.1 to 1.2 h). The median of the absolute difference was 15.6 min (Q1-Q3 = 7.6-33.2 min), and 71% of absolute differences was less than 30 min. The newly developed automated algorithm to determine wake and bed times was highly associated with self-reported times, and can therefore be used to identify waking time in 24-h accelerometry data in large-scale epidemiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2016.1140908DOI Listing

Publication Analysis

Top Keywords

waking hours
12
24-h accelerometry
8
accelerometry data
8
daily activity
8
algorithm-calculated waking
8
hours 158 h/day
8
waking
5
identifying waking
4
waking time
4
time 24-h
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!