In the present paper we first show the experimental Raman, infrared, and neutron INS spectra of tribromomesitylene (TBM) measured in the range 50-3200 cm(-1) using crystalline powders at 6 or 4 K. Then, the bond lengths and angles determined by neutron diffraction using a TBM single crystal at 14 K are compared to the computed ones at different levels of theory. Anharmonic computations were then performed on the relaxed structure using the VPT2 approach, and for the lowest normal modes, the HRAO model has led to a remarkable agreement for the assignment of the experimental signatures. A particularity appears for frequencies below 150 cm(-1), and in particular for those concerning the energy levels of "hindered rotation" of the three methyl groups, they must be calculated for one-dimensional symmetrical tops independent of the frame vibrations. This fact is consistent with the structure established by neutron diffraction: the protons of the methyl groups undergoing huge "libration" motions are widely spread in space. The values of the transitions between the librational levels determined by inelastic neutron scattering indicate that the hindering potentials are mainly due to intermolecular interactions different for each methyl group in the triclinic cell.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b12467DOI Listing

Publication Analysis

Top Keywords

neutron diffraction
12
anharmonic computations
8
methyl groups
8
neutron
5
computations meet
4
meet experiments
4
experiments raman
4
raman neutron
4
diffraction explaining
4
explaining behavior
4

Similar Publications

Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques.

Materials (Basel)

December 2024

Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.

Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.

View Article and Find Full Text PDF

Liquid Structure of Magnesium Aluminates.

Materials (Basel)

December 2024

Interfaces, Confinement, Matériaux et Nanostructures, 45071 Orléans Cedex 2, France.

Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.

View Article and Find Full Text PDF

Phase Evolution of Li-Rich Layered Li-Mn-Ni-(Al)-O Cathode Materials upon Heat Treatments in Air.

Materials (Basel)

December 2024

Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.

The phase evolution of Li-rich Li-Mn-Ni-(Al)-O cathode materials upon heat treatments in the air at 900 °C was studied by X-ray and neutron powder diffraction. In addition, the structures of LiMnAl NiO, x = 0.0, 0.

View Article and Find Full Text PDF

We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!