Synthesis of Polysubstituted 2-Iodoindenes via Iodonium-Induced Cyclization of Arylallenes.

Org Lett

PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, F-75005 Paris, France.

Published: February 2016

A new chemoselective iodocarbocyclization of allenyl arenes was developed leading to the formation of 2-iodoindenes. In acetonitrile or nitromethane, electrophilic sources of iodine cations react selectively with the C2-C3 double bond of 1-arylallenes to give, after anti nucleophilic attack of the aromatic ring, 2-iodoindene products in high yields. Variations of the allenic skeletons revealed the high 5-endo selectivity and some competitive pathways of cyclization. Postfunctionalization reactions of the carbon-iodine bond, via Pd- and Cu-cross-couplings, gave rise to substituted indenes in good to excellent yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5b03634DOI Listing

Publication Analysis

Top Keywords

synthesis polysubstituted
4
polysubstituted 2-iodoindenes
4
2-iodoindenes iodonium-induced
4
iodonium-induced cyclization
4
cyclization arylallenes
4
arylallenes chemoselective
4
chemoselective iodocarbocyclization
4
iodocarbocyclization allenyl
4
allenyl arenes
4
arenes developed
4

Similar Publications

A visible light photocatalytic cascade reaction was developed, involving sequential self-[2+2] photodimerization of benzoylacetones, De Mayo reaction, acetalization, and alkoxylation, yielding tetrahydrofurans with high stereoselectivity, three stereogenic centers, and two quaternary carbons, under mild conditions with a cycloaddition-rearrangement strategy. Given the significance of photoreaction and rearrangement in organic chemistry, this method provides a valuable approach for the synthesis of tetrahydrofurans.

View Article and Find Full Text PDF

Atropisomers with multiple stereogenic axes have attracted much attention due to their increasing significance in the fields of natural products, chiral materials, and drug discoveries. However, the catalytic stereoselective construction of axially chiral ring scaffolds with more than two axes on a single benzene ring remains a challenging task. Herein, we present an efficient method for synthesizing triaxially chiral polysubstituted naphthalene scaffolds via sequential Ni(II)-catalyzed Diels-Alder reaction of isobenzofurans and TfOH-promoted dehydrative aromatization reaction.

View Article and Find Full Text PDF

A series of 3-phosphonyl polysubstituted pyridine were first synthesized by photocatalysis, combining a phosphonyl radical cascade reaction, Boc deprotection, and aromatization. This strategy can avoid the difficulties of activating the C3-H bond on pyridine to synthesize 3-phosphonylpyridine under mild conditions. Furthermore, by constructing different enynes, we can achieve the metal-free modular synthesis of 3-phosphonyl polysubstituted pyridine, which will be transferred into a new type of phosphine ligand.

View Article and Find Full Text PDF
Article Synopsis
  • - A study investigated how gold catalysts affect the synthesis of pyrazolines and dihydropyridines from imines and methyl phenylpropiolate, focusing on three different imines with unique substituents.
  • - The research found that the type of nitrogen substituent influences the reaction path: NHCOMe leads to outward ring opening and pyrazoline products, while aromatic substituents prompt inward ring opening and dihydropyridine products.
  • - The configuration of dihydropyridine is determined by the substituent on the aromatic ring, with electron-donating groups causing direct formation of 1,4-dihydropyridine and electron-withdrawing groups leading to 1,2-dihyd
View Article and Find Full Text PDF

An electrochemical tandem cyclization of enaminones with amidines has been reported for the first time using dibromomethane as an initiating agent in an undivided cell. Following this protocol, a vast variety of polysubstituted 5-acylimidazoles were obtained in moderate to good yields without the use of external oxidants. Mechanistic studies indicate that the bromide anion, electroreductively generated from dibromomethane, acts as a redox mediator to complete the catalytic cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!