Recent studies have revealed that the α7 nicotinic acetylcholine receptor (α7 nAChR) is a critical link between inflammation and neurodegeneration, which is closely associated with Alzheimer's disease (AD). The JAK2/STAT3 and PI3K/AKT signaling pathways contribute to the neuroprotective and anti-inflammatory effects of α7nAChR. Our previous studies have shown that treatment with gx-50 improves cognitive function and is neuroprotective. Here, we investigated the effect of gx-50 on α7 nAChR and Aβ-induced inflammation in microglia. First, the binding affinity of gx-50 to α7 nAChR was examined using the fluorescence-based Octet RED system, and the expression of α7 nAChR was detected using real-time PCR and western blotting. We also investigated downstream events of α7 nAChR activity, including the translocation of p-STAT3 and the phosphorylation of JAK2, STAT3, PI3K, and AKT. Finally, the effect of gx-50 on Aβ-induced inflammation via α7 nAChR-mediated signaling pathways was investigated using cytokine assays. The results showed that gx-50 is able to act as a specific ligand to activate α7 nAChR, which then upregulates the JAK2/STAT3 and PI3K/AKT signaling pathways to inhibit the secretions of pro-inflammatory cytokines, such as IL-1β. In conclusion, the results suggest that gx-50 could inhibit the Aβ-induced inflammatory response in microglia via α7 nAChR activity, which might be a successful therapeutic target against AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-150963DOI Listing

Publication Analysis

Top Keywords

α7 nachr
32
jak2/stat3 pi3k/akt
12
signaling pathways
12
α7
10
nachr
8
pi3k/akt signaling
8
gx-50 α7
8
aβ-induced inflammation
8
nachr activity
8
gx-50
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!