Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionv8hccg5cg2u1a7m4akoef4t0ntkalbl7): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2016.01.010 | DOI Listing |
Int J Nanomedicine
November 2024
Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People's Republic of China.
Background: Cardiac microvascular damage is substantially related with the onset of myocardial ischaemia-reperfusion (IR) injury. Reportedly, allicin (AL) effectively protects the cardiac microvascular system from IR injury. However, the unsatisfactory therapeutic efficacy of current drugs and insufficient drug delivery to the damaged heart are major concerns.
View Article and Find Full Text PDFJ Ethnopharmacol
April 2024
Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China. Electronic address:
Shock
October 2023
Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China.
Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure.
View Article and Find Full Text PDFAnn Med
July 2023
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Treatment with c-kit-positive cardiac cells (CPCs) has been shown to improve the prognosis of ischemic heart disease. MicroRNAs (miRNAs) confer protection by enhancing the cardiac repair process, but their specific functional mechanisms remain unclear. This study aimed to screen for differentially expressed miRNAs in CPCs under hypoxia and explore their effects on the function of CPCs.
View Article and Find Full Text PDFCurr Gene Ther
June 2022
Department of Cardiology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!