Synthetic Peptides as Protein Mimics.

Front Bioeng Biotechnol

Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen , Germany.

Published: February 2016

The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717299PMC
http://dx.doi.org/10.3389/fbioe.2015.00211DOI Listing

Publication Analysis

Top Keywords

synthetic peptides
8
protein mimics
8
protein function
8
protein
6
synthetic
4
peptides protein
4
mimics design
4
design generation
4
generation molecules
4
molecules capable
4

Similar Publications

Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).

View Article and Find Full Text PDF

Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

BMC Plant Biol

December 2024

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.

Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.

View Article and Find Full Text PDF

Effect of Macromolecular Architecture on Adhesion.

Langmuir

December 2024

Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.

The behavior of single linear chains on a substrate is a well-studied area of polymer science. Herein, one of the most essential issues is the interaction of the chains with the substrate, which determines both macromolecular conformations near the substrate and adhesive properties of polymer materials. However, very little is known about the effect of macromolecular architecture on adhesion.

View Article and Find Full Text PDF

Cyclic peptides have higher stability and better properties as therapeutic agents than their linear peptide analogues. Consequently, intramolecular click chemistry is becoming an increasingly popular method for the synthesis of cyclic peptides from their isomeric linear peptides. However, assessing the purity of these cyclic peptides by mass spectrometry is a significant challenge, as the linear and cyclic peptides have identical masses.

View Article and Find Full Text PDF

This study aimed to investigate the impact of varying the formulation of a specific peptide hydrogel (PepGel) on the release kinetics of rhBMP-2 in vitro. Three PepGel formulations were assessed: (1) 50% / (peptides volume/total volume) PepGel, where synthetic peptides were mixed with crosslinking reagents and rhBMP-2 solution; (2) 67% / PepGel; (3) 80% / PepGel. Each sample was loaded with 12 µg of rhBMP-2 and incubated in PBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!