Role of Glycogenolysis in Memory and Learning: Regulation by Noradrenaline, Serotonin and ATP.

Front Integr Neurosci

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia.

Published: February 2016

This paper reviews the role played by glycogen breakdown (glycogenolysis) and glycogen re-synthesis in memory processing in two different chick brain regions, (1) the hippocampus and (2) the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM). Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training glycogen breakdown and re-synthesis. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis) at three specific times during the first 60 min after learning (around 2.5, 30, and 55 min). The chicks learn to discriminate in a single trial between beads of two colors and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR) agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca(2+)]i) in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo and neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717441PMC
http://dx.doi.org/10.3389/fnint.2015.00070DOI Listing

Publication Analysis

Top Keywords

glycogen breakdown
16
glycogen
11
memory
8
noradrenaline serotonin
8
memory processing
8
specific times
8
memory consolidation
8
breakdown
5
role glycogenolysis
4
glycogenolysis memory
4

Similar Publications

Hypercalcemia and co-occurring TBX1 mutation in Glycogen Storage Disease Type Ib: case report.

BMC Med Genomics

January 2025

Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco.

Glycogen Storage Disease Type Ib (GSD-Ib) is a rare autosomal recessive metabolic disorder caused by mutations in SLC37A4, leading to a deficiency in glucose-6-phosphate translocase. This disorder is characterized by impaired glycogenolysis and gluconeogenesis, resulting in clinical and metabolic manifestations. We report a three-month-old Moroccan female patient presenting with doll-like facies, hepatomegaly, dysmorphic features, and developmental delays.

View Article and Find Full Text PDF

Background: In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables.

Methods: We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes.

View Article and Find Full Text PDF

Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.

View Article and Find Full Text PDF

Blueberries are rich in polyphenols, which exhibit significant anti-diabetic activity. In this study, polyphenolic compounds with potential hypoglycemic activity were identified from blueberry polyphenol extract (BPE). This research focused on assessing the hypoglycemic effects of BPE and its polyphenolic compounds (dihydroquercetin and gallic acid) on diabetic mice induced by streptozotocin (STZ) and high-fat diet (HFD), as well as the related fundamental mechanisms.

View Article and Find Full Text PDF

Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!