Background: The aim of this study was to use various theoretical methods derived from the Linear Quadratic (LQ) model to calculate the effects of number of subfractions, time intervals between subfractions, dose per subfraction, and overall fraction time on the cells' survival. Comparison of the results with experimental outcomes of melanoma and breast adenocarcinoma cells was also performed. Finally, the best matched method with experimental outcomes is introduced as the most accurate method in predicting the cell response.
Materials And Methods: The most widely used theoretical methods in the literature, presented by Keall et al., Brenner, and Mu et al., were used to calculate the cells' survival following radiotherapy with different treatment schemes. The overall treatment times were ranged from 15 to 240 minutes. To investigate the effects of number of subfractions and dose per subfraction, the cells' survival after different treatment delivery scenarios were calculated through fixed overall treatment times of 30, 60 and 240 minutes. The experimental tests were done for dose of 4 Gy. The results were compared with those of the theoretical outcomes.
Results: The most affective parameter on the cells' survival was the overall treatment time. However, the number of subfractions per fractions was another effecting parameter in the theoretical models. This parameter showed no significant effect on the cells' survival in experimental schemes. The variations in number of subfractions per each fraction showed different results on the cells' survival, calculated by Keall et al. and Brenner methods (P<0.05).
Conclusions: Mu et al. method can predict the cells' survival following fractionation radiotherapy more accurately than the other models. Using Mu et al. method, as an accurate and simple method to predict the cell response after fractionation radiotherapy, is suggested for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722925 | PMC |
http://dx.doi.org/10.1515/raon-2015-0040 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFBlood
January 2025
Stanford University Medical Center, Stanford, California, United States.
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy limited by graft-versus-host disease (GVHD). In preclinical studies and early-phase clinical studies enrichment of donor regulatory T cells (Tregs) appears to prevent GVHD and promote healthy immunity.We enrolled 44 patients on an open-label, single-center, phase 2 efficacy study investigating if a precision selected and highly purified Treg cell therapy manufactured from donor mobilized peripheral blood improves one-year GVHD-free relapse free survival (GRFS) after myeloablative conditioning (trial NCT01660607).
View Article and Find Full Text PDFDifferentiation of antigen-activated B cells into pro-proliferative germinal center (GC) B cells depends on the activity of the transcription factors MYC and BCL6, and the epigenetic writers DOT1L and EZH2. GCB-like Diffuse Large B Cell Lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2.
View Article and Find Full Text PDFHum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!