A short, high-yielding protocol involving the enantioselective α-chlorination of aldehydes has been developed for the enantioselective synthesis of C2-functionalized aziridines and -alkyl terminal azetidines from a common intermediate. This methodology allows for the rapid preparation of functionalized aziridines in 50-73% overall yields and 88-94% ee, and azetidines in 22-32% overall yields and 84-92% ee. Moreover, we developed a scalable and cost-effective route to the key organocatalyst (54% overall yield, >95% dr).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730893 | PMC |
http://dx.doi.org/10.1016/j.tetlet.2015.01.140 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shandong University, Department of Chemistry, 27 South Shanda Road, 250100, Jinan, CHINA.
Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.
View Article and Find Full Text PDFChemistry
January 2025
Beijing Normal University, College of Chemistry, Xiejiekou NO.19, 100875, Beijing, CHINA.
Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFChirality
January 2025
Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China.
Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!