Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF-β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF-β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF-β1 in the absence of the latency-associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP-TGF-β1, we were able to show that processing of the latent complex by a furin-like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP-TGF-β1, and co-expression of human furin enabled the proteolytic processing of latent TGF-β1. Engineering the plant post-translational machinery by co-expressing human furin also enhanced the accumulation of biologically active TGF-β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067602 | PMC |
http://dx.doi.org/10.1111/pbi.12530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!