Monolayer Filaments versus Multilayer Stacking of Bent-Core Molecules.

Angew Chem Int Ed Engl

University of Warsaw, Department of Chemistry, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.

Published: March 2016

Bent-core materials exhibiting lamellar crystals (B4 phase), when dissolved in organic solvents, formed gels with helical ribbons made of molecular monolayers and bilayers, whereas strongly deformed stacks of 5-6 layers were found in the bulk samples. The width and pitch of the helical filaments were governed by molecular length; they both increased with terminal-chain elongation. It was also found that bulk samples were optically active, in contrast to the corresponding gels, which lacked optical activity. The optical activity of samples originated from the internal structure of the crystal layers rather than from the helicity of the filaments. A theoretical model predicts a strong increase in optical activity as the number of layers in the stack increases and its saturation for few layers, thus explaining the smaller optical activity for gels than for bulk samples. A strong increase and redshift in fluorescence was detected in gels as compared to the sol state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201510123DOI Listing

Publication Analysis

Top Keywords

optical activity
16
bulk samples
12
strong increase
8
monolayer filaments
4
filaments versus
4
versus multilayer
4
multilayer stacking
4
stacking bent-core
4
bent-core molecules
4
molecules bent-core
4

Similar Publications

: This study aimed to assess the role of macular pigment optical density (MPOD) in patients with a full-thickness macular hole (FTMH) compared to healthy controls, evaluating postoperative changes in MPOD and exploring potential correlations with visual outcomes. : This prospective, cross-sectional, comparative study included 16 eyes from FTMH patients who achieved anatomical hole closure following pars plana vitrectomy with the inverted ILM flap technique. Each eye underwent a comprehensive ophthalmologic examination, including BCVA and intraocular pressure measurements, anterior segment evaluation, fundus examination, and macular assessment with Enhanced Depth Imaging Optical Coherence Tomography (EDI-OCT, Spectralis, Heidelberg Engineering Inc.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Automatic Optical Path Alignment Method for Optical Biological Microscope.

Sensors (Basel)

December 2024

Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.

A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.

View Article and Find Full Text PDF

Macrophage (Mph) polarization and functional activity play an important role in the development of inflammatory lung conditions. The previously widely used bimodal classification of Mph into M1 and M2 does not adequately reflect the full range of changes in polarization and functional diversity observed in Mph in response to various stimuli and disease states. Here, we have developed a model for the direct assessment of Mph from bronchial alveolar lavage fluid (BALF) functional alterations, in terms of phagocytosis activity, depending on external stimuli, such as exposure to a range of bacteria (, and ).

View Article and Find Full Text PDF

Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs.

Molecules

January 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!