We previously analyzed the arborization patterns of rat ventral pallidal (VP) axons that coursed caudally to innervate the thalamus and brainstem (Tripathi et al. in Brain Struct Funct 218:1133-1157, 2013). Here, we have reconstructed 16 previously undetected axons from the same tracer deposits that follow a more lateral trajectory. Virtually all 16 axons emanating from the different VP compartments collateralized in the extended amygdala system (EAS) and amygdaloid complex. The most frequent targets of axons from the lateral and medial (VPm) VP compartments were the rostral sublenticular extended amygdala, the extended amygdala (EA), the central nucleus of the amygdala and the posterior part of the basolateral amygdaloid nucleus. In contrast, axons from the rostral extension of the VP preferentially innervated the anterior amygdaloid area, the magnocellular preoptic nucleus, and the anterior part of the basomedial amygdaloid nucleus. We additionally found and reconstructed a single corticopetal axon arising from the VPm. The new results show that both direct and indirect projections from the basolateral complex and EAS to the ventral striatopallidal system are reciprocated by VP projections, and suggest that the systems can be activated simultaneously. The results additionally suggest that the amygdaloid complex and cortex are innervated separately from the VP. Finally, the combination of new and previous data indicate that approximately 84 % of VP axons (88/105) participate in basal ganglia circuits, 15 % (16/105) target the amygdaloid complex, and less than 1 % innervate the cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-016-1184-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!