A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides. | LitMetric

Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides.

Environ Sci Pollut Res Int

Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.

Published: May 2016

Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6132-4DOI Listing

Publication Analysis

Top Keywords

sms-amended soils
12
non-polar pesticides
12
polar pesticides
12
pesticides
10
soils
9
adsorption
8
sms rates
8
pesticides polar
8
adsorption soils
8
application biosorbent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!