CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) were synthesized by using a solution process. High-resolution transmission electron microscopy images and energy dispersive spectroscopy profiles confirmed that stoichiometric CdSe/CdS/ZnS core-shell-shell QDs were formed. Ultraviolet-visible absorption and photoluminescence (PL) spectra of CdSe/CdS/ZnS core-shell-shell QDs showed the dominant excitonic transitions from the ground electronic subband to the ground hole subband (1S(e)-1S(3/2)(h)). The PL mechanism is suggested; the carriers generated by the exciting high-energy photons in the shell region are relaxed to the band-edge states of the core region and recombined to emit lower-energy photons. The activation energy of the carriers confined in the CdSe/CdS/ZnS core-shell-shell QDs, as obtained from temperature-dependent PL spectra, was 200 meV. The quantum efficiency of the CdSe/CdS/ZnS core-shell-shell QDs at 300 K was estimated to be approximately 57%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.00A350 | DOI Listing |
J Phys Chem A
December 2024
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia.
Here, the optical properties of the Nafion polymer membrane containing colloidal CdSe/CdS/ZnS nanocrystals embedded by diffusion have been studied. The CdSe/CdS/ZnS nanocrystals have a core/shell/shell appearance. All experiments were carried out at room temperature (22 ± 2) °C.
View Article and Find Full Text PDFJ Phys Chem Lett
May 2024
Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Most single quantum emitters display non-steady emission properties. Models that explain this effect have primarily relied on photoluminescence measurements that reveal variations in intensity, wavelength, and excited-state lifetime. While photoluminescence excitation spectroscopy could provide complementary information, existing experimental methods cannot collect spectra before individual emitters change in intensity (blink) or wavelength (spectrally diffuse).
View Article and Find Full Text PDFJ Am Chem Soc
December 2023
Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
With CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) as the model system, time- and potential-resolved spectroelectrochemical measurements are successfully applied for studying the general mechanisms and kinetics of electrochemiluminescence (ECL) generation. The rate constant of electron injection from the cathode into a QD to form a negatively charged QD (QD) increases monotonically from -0.88 V to -1.
View Article and Find Full Text PDFJ Am Chem Soc
June 2023
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Many optoelectronic processes in colloidal semiconductor nanocrystals (NCs) suffer an efficiency decline under high-intensity excitation. This issue is caused by Auger recombination of multiple excitons, which converts the NC energy into excess heat, reducing the efficiency and life span of NC-based devices, including photodetectors, X-ray scintillators, lasers, and high-brightness light-emitting diodes (LEDs). Recently, semiconductor quantum shells (QSs) have emerged as a promising NC geometry for the suppression of Auger decay; however, their optoelectronic performance has been hindered by surface-related carrier losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!