The broadband Green's function with low wavenumber extraction (BBGFL) is applied to the calculations of band diagrams of two-dimensional (2D) periodic structures with dielectric scatterers. Periodic Green's functions of both the background and the scatterers are used to formulate the dual surface integral equations by approaching the surface of the scatterer from outside and inside the scatterer. The BBGFL are applied to both periodic Green's functions. By subtracting a low wavenumber component of the periodic Green's functions, the broadband part of the Green's functions converge with a small number of Bloch waves. The method of Moment (MoM) is applied to convert the surface integral equations to a matrix eigenvalue problem. Using the BBGFL, a linear eigenvalue problem is obtained with all the eigenmodes computed simultaneously giving the multiband results at a point in the Brillouin zone Numerical results are illustrated for the honeycomb structure. The results of the band diagrams are in good agreement with the planewave method and the Korringa Kohn Rostoker (KKR) method. By using the lowest band around the Γ point, the low frequency dispersion relations are calculated which also give the effective propagation constants and the effective permittivity in the low frequency limit.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.000945DOI Listing

Publication Analysis

Top Keywords

green's functions
16
band diagrams
12
low frequency
12
broadband green's
12
low wavenumber
12
periodic green's
12
calculations band
8
frequency dispersion
8
dispersion relations
8
dielectric scatterers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!