We report on the first application (to our knowledge) of an extended-wavelength (2.33 μm) multi-mode diode laser for simultaneous measurement of the concentrations of CH(4) and CO in the ambient air. The signals identification and quantitative analysis are performed using correlation spectroscopy. A Herriott cell and the wavelength modulation spectroscopy technique with second harmonic detection are also utilized to improve the detection sensitivity of the system. The detection limits of the system are estimated to be about 81 ppbv and 31 ppbv for CH(4) and CO, respectively. The accuracy, sensitivity, precision, and stability are also analyzed to confirm the potential of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.000859DOI Listing

Publication Analysis

Top Keywords

multi-mode diode
8
diode laser
8
233 μm
8
simultaneous detection
4
detection atmospheric
4
atmospheric ch4
4
ch4 single
4
single tunable
4
tunable multi-mode
4
laser 233
4

Similar Publications

Orthogonally and linearly polarized green emission from a semipolar InGaN based microcavity.

Nanophotonics

January 2024

The School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.

Polarized light has promising applications in biological inspections, displays, and precise measurements. Direct emission of polarized light from a semiconductor device is highly desired in order to reduce the size and energy-consumption of the whole system. In this study, we demonstrate a semipolar GaN-based microcavity light-emitting diode (MCLED) that could simultaneously produce green light with perpendicular and parallel polarizations to the -axis.

View Article and Find Full Text PDF

Ytterbium (Yb)-doped materials are an excellent choice for efficient and powerful ultrafast lasers. They exhibit favorable emission properties, which include a low quantum defect and compatibility with cost-effective high-power pump diodes. While being strongly beneficial for efficiency, the low quantum defect is a challenge for operation in the few-cycle regime.

View Article and Find Full Text PDF

We report intriguing continuous-wave quasi-single-mode random lasing in methylammonium lead bromide (CHNHPbBr) perovskite films synthesized on a patterned sapphire substrate (PSS) under excitation of a 532-nm laser diode. The random laser emission evolves from a typical multi-mode to a quasi-single-mode with increasing pump fluences. The full width at half-maximum of the lasing peak is as narrow as 0.

View Article and Find Full Text PDF

High average power and peak power solid-state lasers are of great interest in the field of laser cleaning. In this research, a high peak power laser with over 400 W average power using a multi-mode stable resonator in a diode-pumped Nd:YAG master oscillator power amplifier has been demonstrated. A maximum peak power over 1.

View Article and Find Full Text PDF

A method by detecting the ellipse fitting degree of the trajectory equation formed by two self-mixing (SM) signals in the multi-longitudinal mode laser SM system with a Wollaston prism is presented to test the free spectral range (FSR) of the laser. By utilizing the orthogonal vector and phase-shift characteristics between adjacent longitudinal modes, the fluctuations in multi-mode SM effects caused by changes in the external cavity length are transformed into alterations in the trajectory composed of two orthogonal SM signals. The FSR is calculated by detecting the difference in external cavity lengths between the two positions, where the trajectory of the two SM signals best fits an ellipse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!