Microresonator based Kerr frequency comb generation has many attractive features, including ultrabroad spectra, chip-level integration, and low power consumption. Achieving precise tuning control over the comb frequencies will be important for a number of practical applications, but has been little explored for microresonator combs. In this paper, we characterize the thermal tuning of a coherent Kerr frequency comb generated from an on-chip silicon nitride microring. When the microring temperature is changed by ~70 °C with an integrated microheater, the line spacing and center frequency of the comb are tuned respectively by -253 MHz (-3.57 MHz/°C) and by -175 GHz (-2.63 GHz/°C); the latter constitutes 75% of the comb line spacing. From these results we obtain a shift of 25 GHz (362.07 MHz/°C) in the comb carrier-envelope offset frequency. Numerical simulations are performed by taking into account the thermo-optic effects in the waveguide core and cladding. The temperature variation of the comb line spacing predicted from simulations is close to that observed in experiments. The time-dependent thermal response of the microheater based tuning scheme is characterized; time constants of 30.9 μs and 0.71 ms are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.000687DOI Listing

Publication Analysis

Top Keywords

kerr frequency
12
frequency comb
12
thermal tuning
8
silicon nitride
8
nitride microring
8
comb spacing
8
comb
7
frequency
5
tuning kerr
4
frequency combs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!