We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.000388DOI Listing

Publication Analysis

Top Keywords

dp-qpsk modulator
16
qpsk modulator
16
orthogonally polarized
12
modulator optical
12
optical carrier
12
optical
9
modulator
9
polarized optical
8
optical single
8
single sideband
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!