Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735092PMC
http://dx.doi.org/10.1186/s11671-016-1271-6DOI Listing

Publication Analysis

Top Keywords

carbon- binder-free
8
binder-free nico2o4
8
nico2o4 nanoneedle
8
nanoneedle array
8
storage reaction
8
nco-nna electrode
8
electrode
5
storage
5
array electrode
4
electrode sodium-ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!