The purpose was to identify the A1 pulley's exact location and thickness by comparing measurements from a clinical high-frequency ultrasound scanner system (CHUS), a customized high-frequency ultrasound imaging research system (HURS) and a digital caliper. Ten cadaveric hands were used. We explored the pulley by layers, inserted guide pins and scanned it with the CHUS. After identifying the pulley, we measured each long finger's thickness using the CHUS and excised the pulley to measure its thickness with a digital caliper and the HURS. The thin hypo-echoic layer was revealed to be the synovial fluid space, and the pulley appears hyper-echoic regardless of scan direction. We also defined the pulley's boundaries. Moreover, the CHUS provided a significantly lower measurement of the pulley's thickness than the digital caliper and HURS. Likewise, based on the digital caliper's measurement, the HURS had significantly lower mean absolute and relative errors than the CHUS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.007DOI Listing

Publication Analysis

Top Keywords

digital caliper
12
high-frequency ultrasound
8
thickness digital
8
caliper hurs
8
thickness
5
pulley
5
chus
5
identification position
4
position thickness
4
thickness annular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!