Dementia represents a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. Alzheimer disease (AD), the most prevalent form of dementia, is a polygenic/multifactorial/complex disorder in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions lead to amyloid deposition, neurofibrillary tangle formation and premature neuronal death, the major neuropathological hallmarks of AD. For the past 20 years, over 1,000 different compounds have been studied as potential candidate drugs for the treatment of AD. About 50% of these substances are novel molecules obtained from natural sources. The candidate compounds can be classified according to their pharmacological properties and/or the AD-related pathogenic cascade to which they are addressed to halt disease progression. In addition to the Food and Drug Administration (FDA)-approved drugs since 1993 (tacrine, donepezil, rivastigmine, galantamine, memantine), most candidate strategies fall into 6 major categories: (i) novel cholinesterase inhibitors and neurotransmitter regulators, (ii) anti-amyloid beta (Aβ) treatments (amyloid-β protein precursor (APP) regulators, Aβ breakers, active and passive immunotherapy with vaccines and antibodies, β - and γ - secretase inhibitors or modulators), (iii) anti-tau treatments, (iv) pleiotropic products (most of them of natural origin), (v) epigenetic intervention, and (vi) combination therapies. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871527315666160202121548 | DOI Listing |
Pathol Res Pract
December 2024
Department of Zoology (PG), Vellalar College for Women, Erode, India. Electronic address:
Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China. Electronic address:
Endometriosis is a prevalent gynecological condition characterized by the presence of endometrial-like tissue outside the uterus, leading to chronic pelvic pain and infertility. This review aims to shed light on the latest advancements in diagnosing and managing endometriosis. It offers insight into the condition's pathogenesis, clinical symptoms, diagnostic techniques, and available treatment approaches.
View Article and Find Full Text PDFTransl Oncol
January 2025
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, Zhejiang, 314000, China. Electronic address:
Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.
View Article and Find Full Text PDFBlood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland.
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!