In vitro modeling of the human blood-brain barrier (BBB) is critical for pre-clinical evaluation and predicting the permeability of newly developed potentially neurotoxic and neurotrophic drugs. Here we summarize the specific structural and functional features of endothelial cells as a key component of the BBB and compare analysis of different cell culture models in reflecting these features. Particular attention is paid to cellular models of the BBB in microfluidic devices capable of circulating nutrient media to simulate the blood flow of the brain. In these conditions, it is possible to reproduce a number of factors affecting endothelial cells under physiological conditions, including shear stress. In comparison with static cell models, concentration gradients, which determine the velocity of transport of substances, reproduce more accurately conditions of nutrient medium flow, since they eliminate the accumulation of substances near the basal membrane of cells, not typical for the situation in vivo. Co-cultivation of different types of cells forming the BBB, in separate cell chambers connected by microchannels, allows to evaluate the mutual influences of cells under normal conditions and when exposed to the test substance. New experimental possibilities that can be achieved through modeling of BBB in microfluidic devices determine the feasibility of their use in the practice for pre-clinical studies of novel drugs against neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871527315666160202125304 | DOI Listing |
Trends Mol Med
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway. Electronic address:
Seven primary familial brain calcification genes have been identified but their role in disease mechanisms has been less explored. Cheng et al. recently demonstrated that astrocyte-mediated regulation of brain phosphate (P) involves direct and functional interactions among three of these proteins, paving the way for new strategies to combat brain calcification.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA.
Diabetol Metab Syndr
January 2025
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.
View Article and Find Full Text PDFCell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!