Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

Hypertension

From the Department of Pathology, University of Iowa College of Medicine, Iowa City (S.U., F.K.H., G.L.B.); and Department of Neurological Sciences, University of Vermont, Burlington (S.-L.C.).

Published: March 2016

Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752427PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06565DOI Listing

Publication Analysis

Top Keywords

pial arterioles
28
ang ii-mediated
20
remodeling hypertrophy
16
epidermal growth
12
growth factor
12
factor receptor
12
ang
10
hypertrophy
8
ii-induced hypertrophy
8
hypertrophy remodeling
8

Similar Publications

Article Synopsis
  • Type 2 diabetes mellitus (T2DM) leads to smaller pial vessels and lower blood flow velocity before and after a stroke, contributing to poor recovery outcomes.
  • After a stroke, T2DM mice showed persistent deficits in blood flow and increased leukocyte adhesion to blood vessel walls, highlighting chronic inflammation's role in complicating recovery.
  • The study used two-photon microscopy to analyze blood flow dynamics, vessel remodeling, and inflammation in the brain, suggesting that T2DM-induced changes worsen stroke effects.
View Article and Find Full Text PDF
Article Synopsis
  • Subarachnoid hemorrhage (SAH) can lead to cerebral ischemia, and recent research suggests that microvasospasm, influenced by perivascular inflammation, plays a role in this condition.
  • A mouse model with intravital 2-photon imaging was used to study vascular and perivascular changes following SAH, revealing that neutrophils and neutrophil extracellular traps (NETs) contribute to the development of microvasospasms.
  • The findings indicate that targeting perivascular NETs could be a potential new treatment approach for mitigating microvasospasm-related issues in SAH.
View Article and Find Full Text PDF
Article Synopsis
  • Cerebrovascular autoregulation (CA) can be disrupted after acute brain injuries, and different levels of carbon dioxide (PaCO₂) influence this regulation, though the specifics are not well understood.
  • This study aimed to examine how changes in PaCO₂ affect pial vasodynamics using a porcine model, preparing for further research on cerebral blood flow (CBF) under varying PaCO₂ levels.
  • Results showed that modifying respiratory rates to adjust PaCO₂ was effective, and while there were changes in pial arteriolar diameter with PaCO₂ variations, significant vasodilation only occurred in a hypercapnic environment, indicating a non-linear relationship.
View Article and Find Full Text PDF

Objective: Intragastric administration of ninjin'yoeito (NYT), a traditional Japanese herbal medicine, reportedly prevents the decrease in baseline cerebral blood flow (CBF) in the cortex following gastric administration of water. We investigated the effect of NYT on baseline and dynamic changes in cerebral cortical arteriole diameter.

Methods: Urethane-anesthetized mice were intragastrically administered 1 g/kg NYT or distilled water (DW).

View Article and Find Full Text PDF

Cumulative evidence suggests that ATP-sensitive potassium (K) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since K channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of K channels in CBF regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!