Disentangling the mechanisms behind climate effects on zooplankton.

Proc Natl Acad Sci U S A

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;

Published: February 2016

Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763741PMC
http://dx.doi.org/10.1073/pnas.1525130113DOI Listing

Publication Analysis

Top Keywords

finmarchicus biomass
16
biomass summer
16
climate effects
12
understanding climate
8
climate influences
8
biomass
6
spring
6
climate
5
effects
5
finmarchicus
5

Similar Publications

Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle.

View Article and Find Full Text PDF

Mesozooplankton play an important role in Arctic shelf ecosystems as a trophic link and a key food source for many larval fish species. The distribution of mesozooplankton in the eastern Barents Sea was studied along a 500 nautical mile-long transect in May 2016 during the spring bloom. Mesozooplankton were sampled using a Juday net hauled from the surface to the bottom at 12 stations.

View Article and Find Full Text PDF

Size fractionation with 2000 and 1000 μm screens is used by the Institute of Marine Research in Norway in routine monitoring of zooplankton biomass. This study examines the separation of taxa by this procedure. For copepods and cladocerans, the fractionation separates individuals according to their size in a consistent and predictable manner.

View Article and Find Full Text PDF

Microplastics (MPs) are contaminants of emerging concern in the Arctic, but knowledge of their potential effects on Arctic plankton food webs remains scarce. We experimentally investigated ingestion and effects of MPs (20 μm polyethylene spheres) on the arctic copepods Calanus finmarchicus, C. glacialis and C.

View Article and Find Full Text PDF

The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!